On a Conjecture on Wiener Indices in Combinatorial Chemistry

نویسندگان

  • Yih-En Andrew Ban
  • Sergey Bereg
  • Nabil H. Mustafa
چکیده

Drugs and other chemical compounds are often modeled as polygonal shapes, where each vertex represents an atom of the molecule, and covalent bonds between atoms are represented by edges between the corresponding vertices. This polygonal shape derived from a chemical compound is often called its molecular graph, and can be a path, a tree, or in general a graph. An indicator defined over this molecular graph, the Wiener index, has been shown to be strongly correlated to various chemical properties of the compound. The Wiener index conjecture for trees states that for any integer n (except for a finite set), one can find a tree with Wiener index n. This conjecture has been open for quite some time, and many authors have presented incremental progress on this problem. In this paper, we present further progress towards proving this conjecture — through the design of efficient algorithms, we show that enumerating all possible trees to verify this conjecture (as done by all the previous approaches) is not necessary, but instead searching in a small special family of trees suffices, thus achieving the first polynomial (in n) time algorithm to verify the conjecture up to integer n. More precisely, we (i) present an infinite family of trees and prove various properties of these trees, (ii) show that a large number of integers, up to at least 108(compared with the previous best 104) are representable as Wiener indices of trees in this succinct family, (iii) provide several efficient algorithms for computing trees with given Wiener indices, (iv) implement our algorithms and experimentally show that their performance is asymptotically much better than their theoretical worst-case upper bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On terminal wiener indices of kenograms and plerograms

Whereas there is an exact linear relation between the Wiener indices of kenograms and plerograms of isomeric alkanes, the respective terminal Wiener indices exhibit a completely different behavior: Correlation between terminal Wiener indices of kenograms and plerograms is absent, but other regularities can be envisaged. In this article, we analyze the basic properties of terminal Wiener indices...

متن کامل

Wiener Way to Dimensionality

This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...

متن کامل

On the edge reverse Wiener indices of TUC4C8(S) nanotubes

The edge versions of reverse Wiener indices were introduced by Mahmiani et al. very recently. In this paper, we find their relation with ordinary (vertex) Wiener index in some graphs. Also, we compute them for trees and TUC4C8(s) naotubes.

متن کامل

The Inverse Problems for Some Topological Indices in Combinatorial Chemistry

In the original paper, Goldman et al. (2000) launched the study of the inverse problems in combinatorial chemistry, which is closely related to the design of combinatorial libraries for drug discovery. Following their ideas, we investigate four other topological indices, i.e., the sigma-index, the c-index, the Z-index, and the M(1)-index, with a special emphasis on the sigma-index. Like the Wie...

متن کامل

Some Topological Indices of Nanostar Dendrimers

Wiener index is a topological index based on distance between every pair of vertices in a graph G. It was introduced in 1947 by one of the pioneer of this area e.g, Harold Wiener. In the present paper, by using a new method introduced by klavžar we compute the Wiener and Szeged indices of some nanostar dendrimers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003